Electrak® HD Technical Features

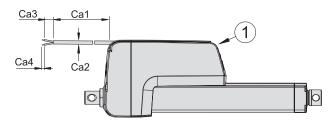
Onboard electronics eliminate the need for standalone controls. Higher power opens a wider range of hydraulic-to-electric conversions. Meets the most extreme OEM component environmental acceptance tests.

0 10

General Specifications						
Parameter	Electrak HD					
Screw type	ball					
Nut type	load lock ball nut					
Manual override	yes					
Anti-rotation	yes					
Dynamic braking	yes (1)					
Static load holding brake	yes					
End-of-stroke protection	internal end-of-stroke limit switches					
Overload protection	yes					
Temperature monitoring	yes					
Temperature compensation	yes					
Voltage monitoring	yes					
Electrical connections (2)	cable(s) with flying leads					
Compliance	CE					

(1) Dynamic braking is included at the ends of stroke for all Electrak HD actuators. Dynamic braking offered throughout the entire stroke length only on low-level switching and SAE J1939 options.

(2) There are one or two cables depending on the control option used. The cable(s) enters the actuator via a connector. The replacement of an actuator can be completed by unplugging the old actuator and plugging in the new one.


Optional Features

Parameter	Electrak HD		
Mechanical options	Variety of front and rear adapters		
	Alternative adapter orientation		
Control options	End-of-stroke output		
(see page 24)	Analog position feedback		
	Digital position feedback		
	Programmable limit switches		
	Signal-follower		
	Low-level signal motor switching		
	CANopen CAN bus		
	SAE J1939 CAN bus		
	Synchronization		

Accessories

Parameter	Electrak HD
Mechanical	Rod end front adapter
Electrical	External slot-mounted limit switches

Cable Definitions

The drawing shows the cables exiting the cable slots at the end of the actuator housing, which is the shipping position. The user can adjust the exit point to be anywhere between the connector (1) in the front of the housing and the end of the cable slots.

Electrak HD Technical Specifications

Mechanical Specifications

Parameter		Electrak HD
Max. static load ⁽¹⁾	[kN (lbs)]	18 (4050)
Max. dynamic load (Fx) HDxx-B017 HDxx-B026 HDxx-B045 HDxx-B068 HDxx-B100 HDxx-B160	[kN (lbs)]	1.7 (382) 2.6 (585) 4.5 (1012) 6.8 (1529) 10 (2248) 16 (3584)
Speed @ no load/max. load ⁽²⁾ HDxx-B017 HDxx-B026 HDxx-B045 HDxx-B068 HDxx-B100 HDxx-B160	[mm/s (in/s)]	71/58 (2.8/2.28) 40/32 (1.6/1.3) 24/19 (0.94/0.75) 18/14 (0.71/0.55) 11/9 (0.43/0.35) 7/5 (0.27/0.21)
Min. ordering stroke (S) length	[mm]	100
Max. ordering stroke (S) length $^{\scriptscriptstyle (3)}$	[mm]	1000
Ordering stroke length increments	[mm]	50
Operating temperature limits	[°C (F)]	- 40 - 85 (- 40 - 185)
Full load duty cycle @ 25 °C (77 °F)	[%]	25 (4)
End play, maximum	[mm (in)]	1.2 (0.047)
Restraining torque	[Nm (lbs)]	0
Protection class - static		IP67 / IP69K
Protection class - dynamic		IP66
Salt spray resistance	[h]	500

Electrical Specifications

Parameter		Electrak HD
Available input voltages (5)	[Vdc]	12, 24, 48
Input voltage tolerance HD12 (12 Vdc input voltage) HD24 (24 Vdc input voltage) HD48 (48 Vdc input voltage)	[Vdc]	9 - 16 18 - 32 36 - 64
Current draw @ no load/max. load HD12-B017 HD24-B017 HD12-B026 HD24-B026 HD24-B026 HD12-B045 HD12-B045 HD24-B045 HD12-B068 HD24-B068 HD24-B068 HD12-B100 HD24-B100 HD12-B100 HD12-B160 HD24-B160 HD24-B160	[A]	3/18 1.5/9 0.75/4.5 3/18 1.5/9 0.75/4.5 3/18 1.5/9 0.75/4.5 3/20 1.5/10 0.75/5 3/18 1.5/9 0.75/4.5 3/20 1.5/10 0.75/4.5 3/20 1.5/10 0.75/5
Motor leads cross section	[mm ² (AWG)]	2 (14)
Signal leads cross section	[mm ² (AWG)]	0.5 (20)
Standard cable lengths (Ca1) $^{\scriptscriptstyle (6)}$	[m (in)]	0.3, 1.5, 5 (11.8, 59, 197)
Cable diameter (Ca2) ⁽⁶⁾	[mm (in)]	7.5 (.295)
Flying lead length (Ca3) ⁽⁶⁾	[mm (in)]	76 (3)
Stripped lead length (Ca4) ⁽⁶⁾	[mm (in)]	6 (0.25)

¹ Max. static load at fully retracted stroke. ² For units with the synchronization option

 $^{\rm 2}$ For units with the synchronization option, the speed is 25% lower at any load. $^{\rm 3}$ 500 mm max. for 16 kN

⁴ For HDxx-B100 and HDxx-160 load, the duty cycle is 15%.

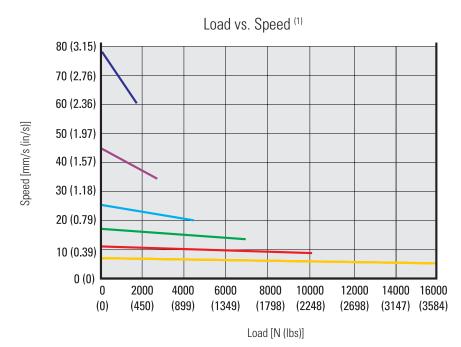
⁵ Do not use PWM voltage for speed control to avoid damaging the onboard electronics

⁶ See previous page for cable definitions

Actuator Weight [kg]																			
Maximum Dynamic		Ordering Stroke (S) [mm]																	
Load (Fx) [kN (Ibs)]	100	150	200	250	300	350	400	450	500	550	600	650	700	750	800	850	900	950	1000
1.7 (382)	6.5	6.7	7.0	7.2	7.5	7.7	8.0	8.2	8.5	8.7	9.0	9.2	9.5	9.7	10.0	10.2	10.5	10.7	11.0
2.6 (585)	6.5	6.7	7.0	7.2	7.5	7.7	8.0	8.2	8.5	8.7	9.0	9.2	9.5	9.7	10.0	10.2	11.6	11.9	12.2
4.5 (1012)	6.5	6.7	7.0	7.2	7.5	7.7	8.0	8.2	8.5	8.7	9.0	9.2	10.4	10.7	11.0	11.3	11.6	11.9	12.2
6.8 (1592)	6.5	6.7	7.0	7.2	7.5	7.7	8.0	8.2	8.5	9.5	9.8	10.1	10.4	10.7	11.0	11.3	11.6	11.9	12.2
10 (2248)	6.7	7.0	7.2	7.5	7.7	8.0	8.2	9.1	9.4	9.7	10.0	10.3	10.6	10.9	11.2	11.5	11.8	12.1	12.4
16 (3584)	8.1	8.3	8.5	8.7	8.9	9.1	9.3	9.5	9.7										

Conversion Factors: Millimeter to inch: 1 mm = 0.03937 in, kilogram to pound: 1 kg = 2.204623 lbs

How to Order the Electrak® HD


This ordering key provides a quick overview of the product versions available. It is important to consider many application details when selecting a product, including the loads, speeds and control options required, as well as the product environment and necessary accessories. More information can be found at www.thomsonlinear.com/hd.

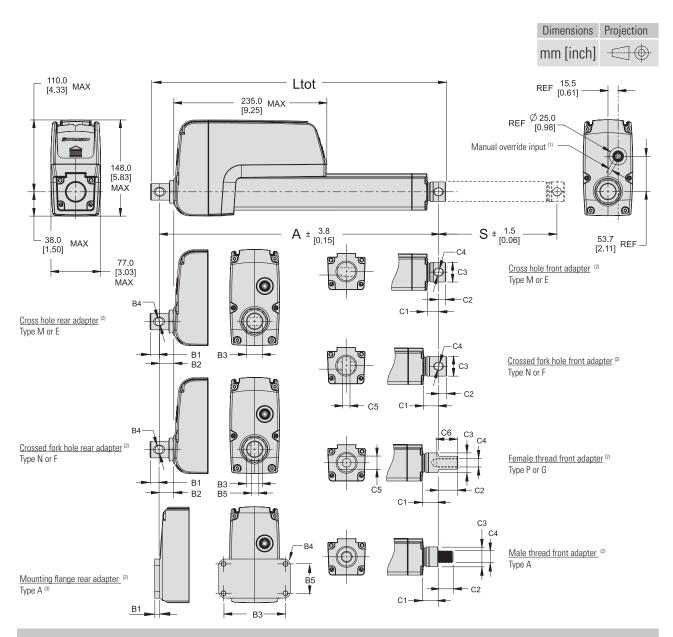
Ordering k	Key									
1	2	3	4	5	6	7	8	9		
HD12	B026-	0300	LXX	2	М	М	S	D		
HD12 = Ele HD24 = Ele	id input voltag ectrak HD, 12 Vd ectrak HD, 24 Vd ectrak HD, 48 Vd	c c			Electrak Modula Options available f EXX = Electronic M	for HD12 and HI Ionitoring Packa	D24 only age only			
B017- = ba B026- = ba B045- = ba B068- = ba B100- = ba	pe, dynamic lo III screw, 1.7 kN III screw, 2.6 kN III screw, 4.5 kN III screw, 6.8 kN III screw, 10 kN (III screw, 16 kN ((382 lbf) (585 lbf) (1012 lbf) (1529 lbf) 2248 lbf)			ELX = EXX + end-of-stroke indication output EXP = EXX + analog (potentiometer) position output EXD = EXX + digital position output ELP = ELX + analog (potentiometer) position output ELD = ELX + digital position output LPS = EXX + LXX + programmable limit switches + signal-follower Options available for HD12, HD24 and HD48					
3. Ordering 0050 = 50 0100 = 100 0150 = 150 0200 = 200 0250 = 250 0300 = 300 0450 = 450 0500 = 500 0550 = 550 0600 = 600 0750 = 750 0800 = 800 0850 = 850 0900 = 900 0950 = 950 1000 = 100) mm) mm) mm) mm) mm) mm) mm) mm	(1) (2)		5.	XX = EXX + low-let LX = EXX + low-let LX = EXX + LXX + XP = EXX + LXX + CNO = SAE J1939 COO = CANopen C SYN = LXX + synch Cable length I = 0.3 m long cab 2 = 1.5 m long cab 2 = 1.5 m long cab 3 = 5.0 m long cab 3 = 5.0 m long cab 4 = rear mounting M = cross hole for 3 N = forked cross hole 5 = forked cross hole 4 = metric M16 ma M = cross hole for 5 = cross hole for 5 = cross hole for 6 = cross hole for 5 = cross hole for 6 = cross hole for 6 = cross hole for 7 = forked cross hole 6 = cross hole for 8 = forked cross hole 9 = metric M12 for 9 = metric M12 for	end-of-stroke ir analog (potentic CAN bus + open- ironization optic AN bus + open- ironization optic les les les ounting flange flange ⁽⁴⁾⁽⁵⁾ 12 mm pin ½ inch pin ole for 12 mm p pile for ½ inch pin ole for 12 mm pin ½ inch pin ole for 12 mm p ole for 12 mm pin ½ inch pin ole for 12 mm pin ½ inch pin	ndication output ometer) position o n-loop speed contro loop speed contro m e options in n	rol		
(2) 500 mm is the m(3) 50 mm stroke ur(4) Max. ordering st	gths available upon r nax. stroke length for nits will have same re troke for the rear mou ad canacity for the re	16 kN units. etracted length and e unting flange type A i	nvelope size as a 100 s 300 mm.	8. /	G = inch 1/2-20 UN Adapter orienta S = standard M = 90 ° turned Connection opti	tion	ead			

D = flying leads

(5) Max. dynamic load capacity for the rear mounting flange type A is 10 kN.


Performance Diagrams

Load vs. Life							
Load (kN)	Stroke (mm)	Life (cycles)					
1.7		60,000					
2.6		40,000					
4.5	200	20,000					
6.8	300	10,000					
10		7,500					
16		4,000					


The life of an actuator is dependent upon the application in which it is used. The table above provides estimates based on a 300 mm stroke that is fully loaded throughout the entire cycle. If you have any questions regarding the life of the Electrak HD in your specific application, please contact Thomson Customer Support.

 1 Curves valid for all units except those with the synchronization option, where the speed at any load is 25% lower than for those without.

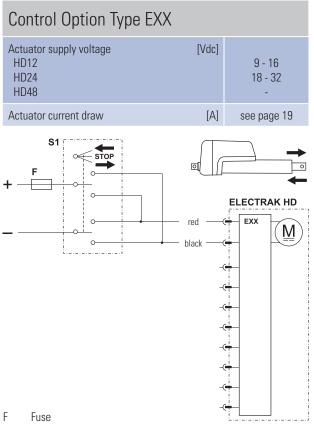
Note! Curves were generated at an ambient temperature of 21°C (70°F). Different ambient temperature and individual actuator characteristics can produce slightly different values.

Dimensions

Rea	Rear and Front Adapter Dimensions [mm (in)]												
	Rear Adapter Types						Front Adapter Types						
	М	E	Ν	F	A ⁽³⁾		М	E	Ν	F	Р	G	А
B1		13.4	(0.53)		7.8 (0.31)	C1	see table on next page 16.5 (0.65)						
B2		21.6 (0.85) -				C2	10.9 (0.43) 12.9 (0.51) 30.0 (1.18) 20.0 (0				20.0 (0.79)		
B3	25.4 (1.0) 95.0 (3.7			95.0 (3.70)	С3	see table on next page							
B4	12.2 (0.48)	12.8 (0.51)	12.2 (0.48)	12.8 (0.51)	6.6 (0.26)	C4	12.2 (0.48)	12.8 (0.51)	12.2 (0.48)	12.8 (0.51)	M12×1.75	1/2-20 UNF-2B	M16×2
B5	-	-	8.2 (0.32)	45.0 (1.77)	С5	8.2 (0.32) 19.0 (0.75) -			-			
	C6 35.0 (1.38) -							-					

(1) The input hole is covered with a plastic threaded plug. When removed, a 6 mm socket can be inserted and used as a crank.

(2) All adapters shown in the standard orientation.

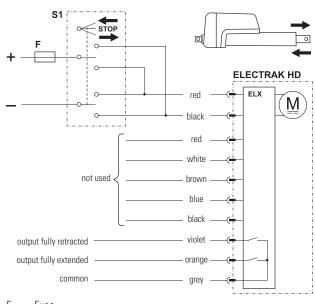

(3) Rear mounting flange type A cannot be ordered with a higher maximum static load capacity than 10 kN or/and a maximum stroke of 300 mm.

Dimensions

$ \begin{array}{ c c } \hline Maximum Dynamic Load (Fx) - Retracted Length (Ltot), Retracted Length (A) and Adapter Dimensions [mm] & 100 - 500 & 550 - 600 & 650 - 700 & 750 - 900 & 950 - 1000 & 950 & 950 - 1000 & 950 & 9$
$ \begin{array}{c c c c c c c } \mbox{Load (Fx)-c} & (A) and Adapter \\ \mbox{Imm} \mbox{Imm} & 100-500 & 550-600 & 650-700 & 750-900 & 950-1000 \\ \mbox{Imm} \mbox{Imm} & 100-500 & 550-600 & 550-700 & 750-900 & 950-1000 \\ \mbox{Imm} \mbox{Imm} & 100-500 & 550-600 & 550-700 & 750-900 & 950-1000 \\ \mbox{Imm} \mbox{Imm} & 100-500 & 550-600 & 550-700 & 750-900 & 950-1000 \\ \mbox{Imm} \mbox{Imm} & 100-500 & 550-600 & 550-700 & 750-900 & 950-1000 & \mbox{Imm} \mbox$
$ \begin{array}{c c c c c c } A & & & & & & & & & & & & & & & & & & $
$ \begin{array}{c} \label{eq:2} \begin{tabular}{ c c c c } \label{eq:2} \end{tabular} & \begin{tabular}{ c c c c } \label{eq:2} \end{tabular} & \begin{tabular}{ c c c c } \label{eq:2} \end{tabular} & \begin{tabular}{ c c c c } \label{eq:2} \end{tabular} & \begin{tabular}{ c c c c } \label{eq:2} \end{tabular} & \begin{tabular}{ c c c c } \label{eq:2} \end{tabular} & \begin{tabular}{ c c c c c } \label{eq:2} \end{tabular} & \begin{tabular}{ c c c c c c c } \label{eq:2} \end{tabular} & \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$
(382) Image: Marrier Ma
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $
$ \begin{array}{c c} \mbox{A} & \mbox{C1} & \mbox{Type M, E} & \mbox{Type M, E} & \mbox{Type N, F} & \mbox{C26.5} & \mbox{C1} & \mbox{C1} & \mbox{C1} & \mbox{C1} & \mbox{C1} & \mbox{C2} & \mbox{C1} & \mbox{C2} & \mbox{C2}$
Lio Type N, F 26.5 27.0 Type P, G Type P, G 24.9 C3 30.2 35.0 Ltot A + B1 + C2 A + B1 + C2
Type P, G 23.9 24.9 C3 30.2 35.0 Ltot A + B1 + C2 A + B1 + C2
C3 30.2 35.0 Ltot A + B1 + C2 A + B1 + C2
Ltot A + B1 + C2 A + B1 + C2
A S + 150.9 + B2 + C1 S + 156.8 + B2 + C1
4.5 C1 Type M, E 17.5 24.0
(2012) Type N, F 26.5 27.0
Type P, G 23.9 24.9
C3 30.2 35.0
Ltot A + B1 + C2 A + B1 + C2
A S + 150.9 + B2 + C1 S + 156.8 + B2 + C1
6.8 C1 Type M, E 17.5 24.0 (1529) Type N, F 26.5 27.0
Type P, G 23.9 24.9 C3 30.2 35.0
C3 30.2 35.0 Ltot A + B1 + C2 A + B1 + C2
A S + 180.9 + B2 + C1 S + 182 + B2 + C1
10 C1 Iype M, E 17.5 24.0 (2248) Type N, F 26.5 27.0
Type P, G 23.9 24.9
C3 30.2 35.0
Ltot $A + B1 + C2$
A S + 182 + B2 + C1
16 C1 Type M, E 24.0
(3584) Type N, F 27.0
Туре Р, G 24.9
C3 35.0

www.thomsonlinear.com

Electrak[®] HD electric linear actuators feature the Electrak Modular Control System, and each unit is shipped with the Electronic Monitoring Package. A generous offering of optional control and feedback features can be configured to fit most applications – all within the same design envelope. Details for each control option and its wiring are described on the following pages. Please contact customer support for more information at www.thomsonlinear.com/cs.


S1 Double pole double throw switch

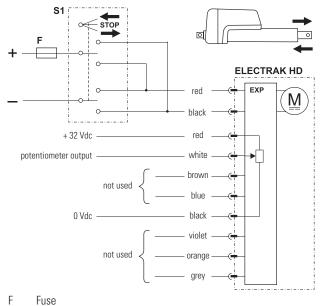
Control option EXX contains all of the basic Electronic Monitoring Package features described on page 7, guaranteeing safe operation of the actuator and equipment. With control option EXX, the polarity of the motor voltage is switched by a customersupplied switch (switch, relay, etc.) to make the actuator extend or retract. The switch, power supply, wiring and all other components must be able to handle the motor current for the actuator model and load being used, as well as the inrush current (up to three times the max. continuous current for the max. load being used for up to 150 milliseconds).

Control Option Type ELX								
Actuator supply voltage HD12 HD24 HD48	[Vdc]	9 - 16 18 - 32 -						
Actuator current draw	[A]	see page 19						
Output contact type		potential free						
Limit switch max. switch voltage	[Vdc/ac]	30/120						

[mA]

100

F Fuse

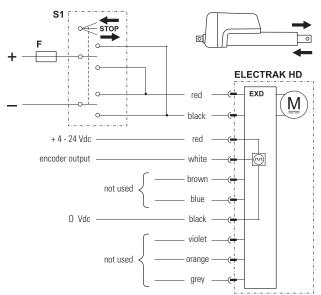

S1 Double pole double throw switch

Limit switch max. switch current

Control option ELX works as option EXX but also has two outputs that indicate when the extension tube is in its fully extended or retracted position.

Control Option Type EXP

Actuator supply voltage HD12 HD24 HD48	[Vdc]	9 - 16 18 - 32 -
Actuator current draw	[A]	see page 19
Potentiometer type		wirewound
Potentiometer max. input voltage	[Vdc]	32
Potentiometer max. power	[W]	1
Potentiometer linearity	[%]	± 0.25
Potentiometer output resolution 50 - 100 mm stroke 150 - 250 mm stroke 300 - 500 mm stroke 550 - 1000 mm stroke	[ohm/mm]	65.6 32.8 19.7 9.8

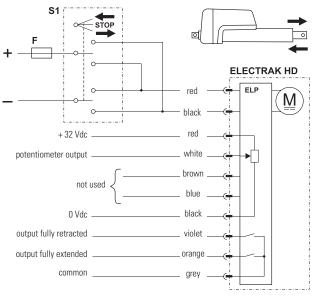


S1 Double pole double throw switch

Control option EXP works as option EXX but also has an analog (potentiometer) output that will provide feedback on the extension tube position.

Control Option Type EXD

Actuator supply voltage HD12 HD24 HD48	[Vdc]	9 - 16 18 - 32 -
Actuator current draw	[A]	see page 19
Encoder type		hall effect
Encoder input voltage	[Vdc]	4 - 24
Encoder output voltage levels low (logical zero), typical / max.	[Vdc]	0.1/ 0.25
Encoder resolution HDxx-B017 HDxx-B026 HDxx-B045 HDxx-B068 HDxx-B100 HDxx-B160	[mm/pulse]	0.28 0.15 0.09 0.07 0.04 0.03

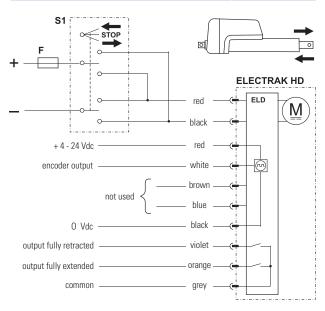

F Fuse

S1 Double pole double throw switch

Control option EXD works as option EXX but also has a single-channel encoder output that will provide feedback on the extension tube position.

Control Option Type ELP

Actuator supply voltage HD12 HD24 HD48	[Vdc]	9 - 16 18 - 32 -
Actuator current draw	[A]	see page 19
Output contact type		potential free
Limit switch max. switch voltage	[Vdc/ac]	30/120
Limit switch max. switch current	[mA]	100
Potentiometer type		wirewound
Potentiometer max. input voltage	[Vdc]	32
Potentiometer max. power	[W]	1
Potentiometer linearity	[%]	±0.25
Potentiometer output resolution 50 - 100 mm stroke 150 - 250 mm stroke 300 - 500 mm stroke 550 - 1000 mm stroke	[ohm/mm]	65.6 32.8 19.7 9.8

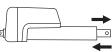

F Fuse

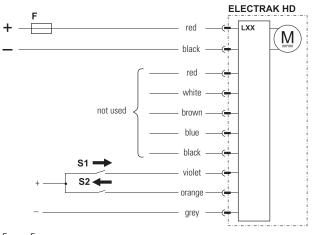
S1 Double pole double throw switch

Control option ELP works as option EXP but also has two outputs that indicate when the extension tube is in its fully extended or retracted position.

Control Option Type ELD

Actuator supply voltage HD12 HD24 HD48	[Vdc]	9 - 16 18 - 32 -
Actuator current draw	[A]	see page 19
Output contact type		potential free
Limit switch max. switch voltage	[Vdc/ac]	30/120
Limit switch max. switch current	[mA]	100
Encoder type		hall effect
Encoder input voltage	[Vdc]	4 - 24
Encoder output voltage levels low (logical zero), typical / max.	[Vdc]	0.1/ 0.25
Encoder resolution HDxx-B017 HDxx-B026 HDxx-B045 HDxx-B068 HDxx-B100 HDxx-B160	[mm/pulse]	0.28 0.15 0.09 0.07 0.04 0.03


F Fuse

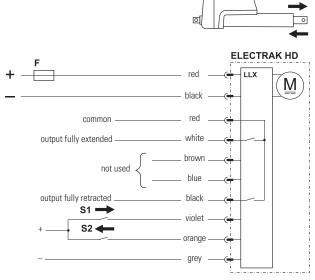

S1 Double pole double throw switch

Control option ELD works as option EXD but also has two outputs that indicate when the extension tube is in its fully extended or retracted position.

Control Option Type LXX

Actuator supply voltage HD12 HD24 HD48	[Vdc]	9 - 16 18 - 32 36 - 64
Actuator current draw	[A]	see page 19
Extend / retract input voltage HD12(24) HD48	[Vdc]	9 - 32 12 - 64
Extend / retract input current	[mA]	6 - 22

F Fuse


S1 Extend switch

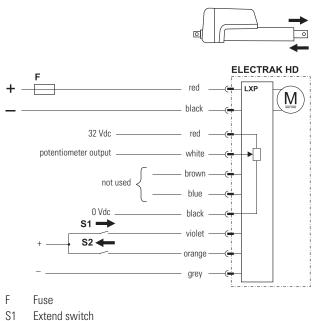
S2 Retract switch

Control option LXX has all the basic Electronic Monitoring Package features included in control option EXX, but the polarity of the motor voltage is switched by the onboard electronics instead. The customer-supplied switches used to command the actuator to extend or retract only need to handle low-level signals. However, the power supply and wiring that supply the actuator must be able to handle the motor current for the actuator model and load being used, as well as the inrush current (up to one and a half times the max. continuous current for the max. load being used for up to 150 milliseconds).

Control Option Type LLX

Actuator supply voltage HD12 HD24 HD48	[Vdc]	9 - 16 18 - 32 36 - 64
Actuator current draw	[A]	see page 19
Output contact type		potential free
Limit switch max. switch voltage	[Vdc/ac]	30/120
Limit switch max. switch current	[mA]	100
Extend / retract input voltage HD12(24) HD48	[Vdc]	9 - 32 12 - 64
Extend / retract input current	[mA]	6 - 22

F Fuse

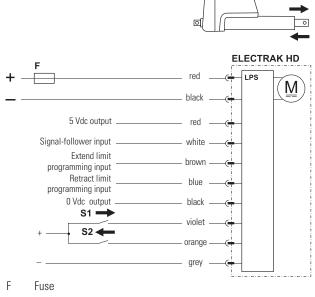

S1 Extend switch

S2 Retract switch

Control option LLX works as option LXX but also has two outputs that indicate when the extension tube is in its fully extended or retracted position.

Control Option Type LXP

Actuator supply voltage HD12 HD24 HD48	[Vdc]	9 - 16 18 - 32 36 - 64
Actuator current draw	[A]	see page 19
Potentiometer type		wirewound
Potentiometer max. input voltage	[Vdc]	32
Potentiometer max. power	[W]	1
Potentiometer linearity	[%]	±0.25
Potentiometer output resolution 50 - 100 mm stroke 150 - 250 mm stroke 300 - 500 mm stroke 550 - 1000 mm stroke	[ohm/mm]	65.6 32.8 19.7 9.8
Extend / retract input voltage HD12(24) HD48	[Vdc]	9 - 32 12 - 64
Extend / retract input current	[mA]	6 - 22


S2 Retract switch

Control option LXP works as option LXX but also has an analog (potentiometer) output that will provide feedback on the extension tube position.

Control Option Type LPS

Actuator supply voltage HD12 HD24 HD48	[Vdc]	9 - 16 18 - 32 -
Actuator current draw	[A]	see page 19
Signal-follower input voltage	[Vdc]	0.5 - 4.5
Signal-follower max. output current	[A]	0.8
Signal-follower movement	[mm/Vdc]	stroke* [mm] / 4
Signal-follower repeatability	[± mm]	0.1
Programming inputs voltage HD12(24) HD48	[Vdc]	9 - 32 -
Extend / retract input voltage HD12(24) HD48	[Vdc]	9 - 32 -
Extend / retract input current	[mA]	6 - 22

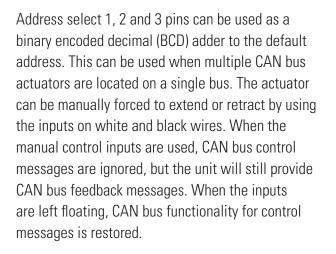
* ordering stroke of the actuator or the stroke between any set programmable extend or retract limits.

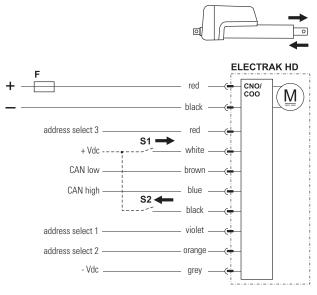
S1 Extend switch

S2 Retract switch

Control option LPS works as option LXX but also has programmable mid-stroke software extend and retract limits as well as a signal-follower input that allows the extension tube position to be controlled from a potentiometer or other voltage control. Both functions can be used at the same time.

Control Option Type SYN Actuator supply voltage [Vdc] HD12 9 - 16 18 - 32 HD24 36 - 64 HD48 Actuator current draw [A] see page 19 Extend / retract input voltage [Vdc] 9 - 32 HD12(24) HD48 12 - 64 Extend / retract input current [mA] 6 - 22 Number of synchronized actuators 2+ Max. actuator speed difference [%] 25 F Master actuator Fuses S1 Extend switch S2 Retract switch Г 0 S3 Override switch R Resistors 120 Ohm ELECTRAK HD SYN red Μ black **S**3 red white not used browr hlue R not used black S1 = violet S2 ◀ orang grey **Slave actuators** രി ELECTRAK HD red SYN Μ black red not used R white not used brown blue not used black not used violet not used orange not used grey


Control option SYN works as option LXX but also has a synchronization feature, allowing two or more actuators having the SYN option to run in integrated motion.


When using the low-level extend and retract inputs on the master actuator, the slave(s) will follow. If there is a need to run an actuator individually, it is possible to put it into an override state by closing a switch (S3) connected to the red lead as shown in the wiring diagram.

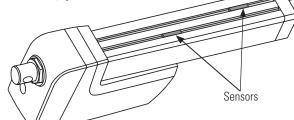
Important desig notes:

- Ensure that supply voltage to each actuator is within ±1.0 V.
- Uneven loading between the actuators is not recommended, but the synchronization option can withstand its effects up to a 25% speed loss.
- For units with the synchronization option, the speed at a given load is 25% lower than for those without. This is true irrespective of the unit being in synchronization or override mode, or simply run individually.
- If one actuator encounters an overload condition, it will trip the overload protection and send a signal to each actuator on the network to stop. The units can be immediately reversed (unless they bind up the system), or they can continue in the same direction after a power reset.
- If power is lost at any time to any actuator, the actuators still powered will continue their last commanded move until told to stop, either by an individual current overload trip, or a stop signal sent from the master actuator.
- If communication is lost (i.e. brown/blue wires cut), the slaves
 will continue their last commanded move until they reach end of
 stroke or trip current overload. The master will continue its last
 commanded move unless commanded to stop with the switching
 leads, reaching end of stroke, or tripping current overload.
- After a large number of mid-stroke movements, the time difference between each unit receiving a signal to move (master vs. slave) will add to small variances in when the units start and stop. Since they are designed to run at the same speed, these small differences amount to a variance of position over time – even when load is applied. To address this concern, Thomson suggests running the units either to a fully extended or fully retracted position each cycle to re-align the units with each other to take out these added variances.
- In order to give the master and slave(s) enough time to communicate there must be at least 250 ms between each start and stop command.

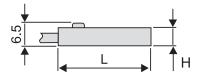
Control Option Type CNO and COO		
Actuator supply voltage HD12 HD24 HD48	[Vdc]	9 - 16 18 - 32 36 - 64
Actuator current draw	[A]	see page 19
Command data includes: • position • speed • current		
Feedback data includes: • position • speed • current • other diagnostic information		
Extend / retract input voltage HD12(24) HD48	[Vdc]	9 - 32 12 - 64
Extend / retract input current	[mA]	6 - 22

F Fuse

- S1 Manual extension switch (optional)
- S2 Manual retraction switch (optional)

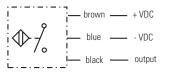

Control option CNO has a SAE J1939 CAN bus control interface, COO has a CANopen control interface that control and monitor the actuator. Extend and retract commands are sent via CAN messages on the CAN low and CAN high pins.

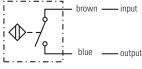
Accessories


Limit Switches for Cover Tube Mounting

			0
Sensor type		solid state	reed switch
Contact type		normally o	open (N.O.)
Output type		PNP	contact
Voltage	[VDC/AC]	10 - 30 /	5 -120 / 5 -120
Max. current	[mA]	1	00
Hysteresis	[mm]	1.5	1.0
Operating temperature	[°C]	- 25 to + 85	- 25 to + 70
Lead cross section	[mm ²]	3×0.14	2×0.14
Length (L)	[mm]	25.3	30.5
Height (H)	[mm]	5.1	5.7
Protection class		IP69K	IP67
LED indicator		y	es
Connection		2 m cable wi	th flying leads
p/n		840-9131	840-9132

Mounting positions

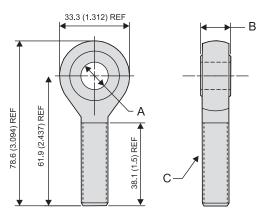

Dimensions [mm]



Connection

Solid state

Reed switch



The limit switches are mounted in the cover tube slots and will be switched by a magnet mounted inside of the actuator on the extension tube.

Rod End Front Adapter

Туре	metric	inch
Material	Cadmium-p	plated steel
Dimensions A B C	12.0 ± 0.1 mm 14.3 ± 0.1 mm M12	0.5 in 0.625 in 1/2-20 UNF
p/n	756-9021	756-9007

Dimensions [mm (in)]

The rod end front adapter comes in a metric or inch version. The metric adapter can be mounted to the front of the extension tube if the actuator is equipped with the metric female thread front adapter option (type P), while the inch adapter requires the inch female thread option (type G).

Wire Harness Kits

Part Number	Description
954-9364	0.3 m Power Only (EXX)
954-9365	1.5 m Power Only (EXX)
954-9366	5.0 m Power Only (EXX)
954-9367	0.3 m Power and 8-Wire Signal (ELX, ELP, ELD, LXX, LLX, LXP, CNO, COO, SYN)
954-9368	1.5 m Power and 8-Wire Signal (ELX, ELP, ELD, LXX, LLX, LXP, CNO, COO, SYN)
954-9369	5.0 m Power and 8-Wire Signal (ELX, ELP, ELD, LXX, LLX, LXP, CNO, COO, SYN)
954-9370	0.3 m Power and 3-Wire Signal (EXP, EXD)
954-9371	1.5 m Power and 3-Wire Signal (EXP, EXD)
954-9372	5.0 m Power and 3-Wire Signal (EXP, EXD)